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Summary. Wright and McPhee (1925) suggested a method of estimating the inbreeding coefficient of an individ- 
ual based on the probability that a pair of lineages traced randomly, one through the maternal line and one 
through the paternal line, both contain a common ancestor. (One-half of this probability is an unbiased estimate 
of the inbreeding coefficient). In their procedure, maternal and paternal lines are chosen in pairs, and compar- 
isons are made only between the lines in a pair. A more efficient procedure is to compare every maternal line 
with every paternal line, a procedure used by Robertson and Mason (1954). In this paper we provide estimates 
of the sampling variance of the inbreeding coefficient as estimated by the multiple comparison method, and we 
examine the relative efficiency of this method and the Wright-McPhee procedure. Formulae are also provided 
for ascertaining the optimal sampling method for estimating the average inbreeding coefficient of a group or 
herd. 

The inbreeding coefficient F was first defined by 

Wright in 1922, and since that time the quantity F 

has been used extensively as a measure of the amount 

of heterozygosity to be expected in an individual or 

group. Although the inbreeding coefficient was orig- 

inally defined as the correlation coefficient between 

uniting gametes, Cotterman (1940) and Malecot (1948) 

preferred to interpret it as the probability that a pair 

of alleles in uniting gametes are identical by descent. 

For most purposes the definitions are equivalent. In 

this paper, we will find it convenient to make use of 

Wright's (1922) expression for the evaluation of the 

inbreeding coefficient of an individual with an irreg- 

ular pedigree : 

r 
m . + n . + l  

F = (1/2) 1 1 (l+Fi) " 

i=1 

(1) 

A brief explanation of this expression is in order: 

consider two lines of ancestry of the individual in 

question, one line tracing back through the sire (pa- 

ternal line) and the other tracing back through the 

dam (maternal line), and suppose that the lines con- 

nect for the first time at some common ancestor, say 

an ancestor denoted "i". Such a pair of lines is re- 
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ferred to as a "path". In expression (I), r is the 

number of unique paths associated with the individual 

in question; m i and n i are the number of generations 

from the sire and dam, respectively, to the common 

ancestor associated with the i th path, and F i is the 

inbreeding coefficient of the common ancestor asso- 

ciated with the i th path. The inbreeding coefficient of 

a group of individuals is defined to be the average of 

the coefficients defined in (I) of all individuals in the 

group. 

The definition and computation of the inbreeding 

coefficient has been considered by several authors 

( e . g .  H a l d a n e  and  M o s h i n s k y  1939,  C o t t e r m a n  1940 

and  Kudo 1 9 6 2 ) ,  and  good  d e t a i l e d  d i s c u s s i o n s  a r e  

a v a i l a b l e  in  s t a n d a r d  t e x t s  ( e . g .  C r o w  a n d  K i m u r a  

1970,  E l a n d t - J o h n s o n  1971 a n d  J a c q u a r d  1 9 7 4 ) .  One  

point about the inbreeding coefficient that warrants 

special emphasis is that the inbreeding coefficient 

is a relative rather than an absolute measure of the 

homozygosity of an individual or group. It measures 

the degree of homozygosity relative to what it would 

be in an individual obtained by breeding randomly 

among descendants of a specified foundation stock. 

In the evaluation of an inbreeding coefficient, the 

foundation stock may be defined (perhaps implicitly) 

a s  t he  s t o c k  in  e x i s t e n c e  a t  t h e  b e g i n n i n g  of  t h e  h e r d -  

b o o k .  A l t e r n a t i v e l y ,  t h e  p e d i g r e e s  c o u l d  b e  t r a c e d  

b a c k  o n l y  to s o m e  s e l e c t e d  d a t e ,  and  t he  f o u n d a t i o n  

s t o c k  would  be  t he  s t o c k  in  e x i s t e n c e  a t  t h e  c h o s e n  

d a t e .  
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The inbreeding coefficient of any individual or 

group could be computed by tabulating and comparing 

all possible maternal and paternal lines and using 

expression (I). In all but the simplest cases, this 

is an arduous task. Wright and McPhee (1925)point 

out that the complete pedigree of a modern Shorthorn 

would require the tabulation of several million names. 

To overcome this difficulty, Wright and McPhee (1925) 

suggested estimating the coefficient by comparing 

randomly chosen maternal and paternal lines. Se- 

quences of sires and dams to be traced back in the 

herdbook are selected by repeated tosses of a fair 

coin, and the inbreeding coefficient is estimated as 

one-half the probability that such a random walk through 

the maternal and paternal ancestries results in lines 

that connect at a common ancestor. In addition to 

showing the usefulness of this deeply insightful sampl- 

ing scheme and illustrating the estimation procedure, 

Wright and McPhee point out how the scheme could be 

used in combination with a complete listing of part 

of the pedigree. 

Using the basic sampling procedure proposed by 

Wright and McPhee, we suggest an alternative esti- 

mation procedure that can be expected to yield more 

precise estimates of the inbreeding coefficient of an 

individual or group. Instead of comparing each mater- 

nal line with only one paternal line in search of "ties" 

(lines that contain the same individual ), we propose 

that each maternal line of an individual be compared 

with every paternal line of that same individual. Es- 

sentially this procedure was employed to good effect 

by Robertson and Mason (1954) in their study of in- 

breeding in the Red Danish breed of cattle. In this 

paper we describe the estimation procedure in detail 

and derive approximations of the variance of the 

estimates. We assume, without significant loss of 

generality, that the inbreeding coefficient of each 

common ancestor is zero (i.e. F = 0 in expression 
I 

(I)). The actual estimation procedure can easily be 

amended according to the discussion in Wright and 

McPhee (1925) to provide estimates when this as- 

sumption is unwarranted. 

Estimation of the Inbreeding Coefficient of an Individ- 

ual 

The Wright-McPhee method has been widely used to 

estimate the average inbreeding coefficient of a group 

of individuals, but it is also applicable to the estima- 

tion of the inbreeding coefficient of a single individ- 

ual. Wright and McPhee (1925, p. 351) state: "[Our] 

method may be used to calculate the inbreeding coef- 

ficient of an individual, by finding the percentage of 

ties in a large number of two-column samples from 

his pedigree. " They also state (p. 350) that "a single 

[two-column] sample of this sort is of practically no 

value as an indication of the inbreeding of an individ- 

ual. ' ' 

Consider n pairs of maternal lines chosen random- 

ly according to the procedure described in the pre- 

vious section. A pair of lines containing a common 

ancestor will be said to be "tied". Thus, in a sample 

of n pairs of lines there are n possible ties. Let P 

denote the probability of a tie. It is easily shown that 

P = 2F ~ thus, the probability of a tie between random- 

ly chosen lines is twice the inbreeding coefficient. In 

the following discussion we consider the estimation of 

P of a single individual. 

In the Wright-McPhee method the distribution of 

the number of ties is binomial with parameters n and 

P. The maximum likelihood estimated of P is simply 

^ 

P = ( n u m b e r  o f  t i e s ) / n  ( 2 )  

with variance 

VI(P) = P(1-P)/n (3) 

Our alternative procedure is first to visualize the 

sample as one of 2n randomly chosen Iines (n ma- 

ternal and n paternal lines) rather than as a sample 

of n pairs of lines and, second, to estimate the in- 

breeding coefficient by making all possible compari- 

sons between the maternal and paternal lines. This 

procedure requires little extra effort in practice, 

since the most time-consuming part of obtaining an esti - 

mate of the inbreeding coefficient is tracing sequences 

of sires and dams through the herdbook. Once a num- 

ber of sequences have been tabulated, it is relatively 

simple to compare them pairwise searching for a 

common ancestor. Moreover, for the same total num- 

ber of lines, the alternative procedure can be expected 

to yield more precise estimates than the one original- 

ly proposed by Wright and McPhee. We now consider 

a more detailed formulation of this procedure. 
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With n randomly chosen maternal  and paternal  

l ines,  let 

X . . = ,  lj 

=0 

and using the following unbiased es t imates  of P , 2  

and P21 : 
if there is a tie be- 

n n n 
tweentheithmaternal ^ 2 ~--~ ~ ,  ~-~, 

and elsewhereJth paternal l ines P,2 - n2(n_l)  i=1 k=l j=k+, 

i = 1,2 . . . .  ,n;  j = , , 2 , . . . , n .  Clearly,  

EX.. =P  
13 

and therefore, 

= number of observed ties (4) 
number of possible t ies 

^ .~. Xij 
p= 1j 

2 
n 

is an unbiased estimate of P. The variance of this 

estimate is no longer in the form of a simple binomial 

variance since the X.. 's are not independent. Also, 
lj 

without simplifying assumptions, it seems impossible 

to write the likelihood in a tractable form because it 

depends on the entire configuration of the pedigree. 

An expression for the variance of P can, however, be 

easily obtained by first writing 

V(n2p) = ~V(Xij) + ~ ,  Cov(Xi j ,Xk, )  - 
ij ijk 1 

(i, j )~(k,  ,)  

Making the reasonable assumptions that 

(a) Cov(Xi j ,Xkl)  = 0 if i / k  and j /  1 

(b) Cov(Xij ,Xil)  = CoV(Xkj,Xk,)  if j /  1 

(c) Cov(Xij ,Xkj)  = Cov(Xi l ,Xk l )  if i / k and 

the previous expression simplifies to 

+ ECoV_Xll,X,2_() + 
n n 

+ Cov(Xll ,x21)~.  (5) 

Again, without simplifying assumptions, the covari- 

ance terms cannot be written as functions of P only. 

An estimate of V(P) based on the data can be found, 

however, by noting that 

C o v ( X 1 1 , X i 2 ) = P r ( X , i = 1 ,  X12 = 1 ) - P 2 = P i 2 - P 2  

Cov(X,1,X21) : P r ( X i l = i ,  X 2 1 = l ) - p 2 = P 2 1 - P 2  

XikXij 

n 

1 ~ Xio (Xie -  1) 
n2(n-1) i=l 

n n n 

P21-  n2(n_l)  i-=l k=, j=k+l 
XkiXji 

n 

1 ~ Xoj ( X . j -  
n2(n-1) j=,  

,)  

where a "dot" in a subscript position indicates summa- 

tion over the subscript. These expressions essentially 

count the number of times each maternal (paternal) 

line ties with two paternal (maternal) lines. Substitut- 

ing P, PI2 and P21 into (5), we obtain the following 
^ 

estimate of V(P), 

+ (6 )  
n 2 n + " 

Using expressions (4) and (6), an estimate of the 

inbreeding coefficient, F, and its variance are simply 

obtained as 

and 

Relative Efficiency. 

It is worthwhile to consider the efficiency of this pro- 

cedure relative to the one originally proposed by 

Wright and McPhee. To this end we make the simpli- 

fying assumption that any maternal or paternal line 

can contain at most one common ancestor. Further 

insights into the problem can also be gained under 

this assumption. Let a denote the number of common 

ancestors and let qm(i) [qf(i)] denote the probability 

that a randomly chosen maternal (paternal) line con- 

tains the i th ancestor. With these specifications, we 

have 
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a 

P = ~ q m ( i ) q f ( i )  

i=1 

and 

a 

P = ~ ,  qm ( i )  ~If(i) 
i=1 

(7) 

where  ~ m ( i )  = Y i / n ,  ~ f ( i )  = Z i / n  , and Yi and Z i a r e  

the n u m b e r  of m a t e r n a l  and p a t e r n a l  l i n e s ,  r e s p e c -  

t i ve ly ,  that  p a s s  th rough  the i th a n c e s t o r .  C l e a r l y ,  

{ Yi } and {Zi} have i n d ep en d en t  m u l t i n o m i a l  d i s t r i b u -  

t ions  with parameters {qm(i)} and Iqf(i)l, respec- 

tively, provided sampling is with replacement. Note 

that expression (7) is equivalent to expression (4). 

To obtain an easily interpretable expression of 
^ 

relative efficiency we would like the variance of P 

to be a function of P only. This is not possible at this 

point since V(P) when computed from (7) still de- 

pends on the entire configuration of the pedigree 

through I q m ( i ) t  and t q f ( i )  t . An a p p r o x i m a t e  e x p r e s -  

s ion  can  be ob t a ined  by a s s u m i n g  that  q m ( i ) ~  q f ( i ) ,  

i = 1 ,2 ,  �9 . .  , a .  One can  then  c a l c u l a t e  how much  each  

c o m m o n  a n c e s t o r  c o n s i d e r e d  i nd iv idua l l y  c o n t r i b u t e s  
^ 

to the v a r i a n c e  of P ,  and these  c o n t r i b u t i o n s  can  be 

s u m m e d  o v e r  all  c o m m o n  a n c e s t o r s .  (The a u t h o r s  

a r e  g ra te fu l  to P r o f e s s o r  Alan  R o b e r t s o n  for  po in t ing  

th i s  out .  ) Suppose ,  then ,  that  t h e r e  is  on ly  one c o m -  

mon  a n c e s t o r  in the p e d i g r e e .  In such  a c a s e  

v ( P )  __ v2 (~  ) _ P(1-P)2 + ~ P ( V ~ - P ) .  (8) 
n n 

If there are a common ancestors and all of them 

contribute equally to the overall estimate, then we 

may write P = ap and, summing (8) over all corn- 
2 

mon ancestors and neglecting terms of order p , we 

have 

v('P) = -~  + 2 
n n 

Professor Robertson (personal communication) has 

pointed out that a useful definition of the effective 

value of a would be (~p)3/(~p3/2)2. In most pop- 
! 

ulations of domestic animals the effective value of 

a is not expected to be large. In the Red Danish breed 

of cattle, the effective value of a turns out to be about 

6 (A. Robertson, personal communication). 

In any case, expression (8) is clearly a maximum 

estimate of V(P). Thus (8) is the conservative esti- 

mate to be used in comparing the efficiency of our 

estimation procedure with that of Wright and McPhee. 

The efficiency of our procedure relative to the Wright- 

McPhee procedure is at least as great as 

v2(P) 1 
v1(~ ) n 

2(n-1) "~- P 
2 n I -P 

(9) 

^ 

where VI(P) is from expression (3). This ratio in- 

creases monotonically from I/n to I as P goes from 

0 to I. Thus, as one might have anticipated, the pro- 

posed estimation procedure can be expected to be con- 

siderably better if the inbreeding coefficient is small. 

For example, when n = 5 and P = 0.I0, 

v 2 (~)/v I (~) -- 0.28, so the proposed procedure is 

certainly the preferred one. Indeed, when P is small, 

v2(P) I 2(n-1)V-g 
v1(~ ) n n2 

Estimation of the Inbreedin~ Coefficient of a 

Population 

In this section we follow Wright and McPhee in defin- 

ing the inbreeding coefficient of a group as the average 

of the individual inbreeding coefficients of the mem- 

bers of the group. There will almost inevitably be a 

variance in the individual inbreeding coefficients in a 

group because different individuals in the group will 

have somewhat different ancestries. Thus, semi-per- 

manent differences between lines in the group induce 

variation in F. 

Here we are concerned with estimating F, the in- 

breeding coefficient of a group, defined as the average 

of the individual inbreeding coefficients over all mem- 

bers of the group. An estimate of Fg (or equivalently 

Pg = 2%) can be obtained by randomly choosing k 

members of the group and averaging the estimates of 

the individual inbreeding coefficients" 

k 

2F = P = k (I0) 
g g 

i=l 
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^ 

where Pi is an estimate of 2F i for the ith member of 

the sample. For the original Wright-McPhee proce- 

dure, the variance of such an estimate is 

proximate expression for Z is 

z= + %- 2 g)-o2 /o2g_ g (14) 

~g 11Pg(1- %) 1 2] v( ):~ n + (1-n)~ (11) 

where n is the number of randomly chosen pairs of 

lines for each individual in the sample and c~ 2 is the 
g 

variance of twice the individual inbreeding coefficients 

in the group. From this expression it can be easily 

shown that when the total number (nk) of pairs of lines 

is taken to be fixed, V(Pg) is minimized when n = I; 

that is, when the original Wright-McPhee procedure 

is employed, only one random pair of lines per indi- 

vidual should be used. When this is the case (8) re- 

duces to 

V(Pg) = %(1- Pg)/nk 

which can be estimated by 

~(~g) : Pg(1 - ~g)/~. (12) 

and in this form the optimal choice of n can be cal- 

culated with relative ease. 

Intuition would lead one to expect that, if the var- 

iance in the inbreeding coefficients of a group of in- 

dividuals is large, then (for a fixed expenditure of 

effort) the optimal procedure for estimating F would 
g 

be to obtain relatively imprecise estimates of the in- 

dividual inbreeding coefficients of as many individuals 

as possible and to average these. If, on the other hand, 
2 

a is small, then you would want to estimate with g 
greater precision the inbreeding coefficients of fewer 

individuals. Intuition is supported by the above rule 

that n should be the closest integer less than 1/-~. 

When P = 0.22, for example (this is roughly the 

average value of P in Red Danish bulls (see Ro- 

bertson and Mason 1954), then the optimal choice of 

n is n = 1 for (2 >0.012. However, the optimal n 
g 2 2 is 2 if 2= 0.01, 7 if = 0.001, and 24 if ~ = 

g g g 
: 0.0001. 

When our proposed procedure is used to estimate 

P. = 2F. for each member of the sample, the variance 
i ^ 1 

of P is 
g 

Pg(1-%) n 2 1 2 n-1 
g) : . ___2__~ + --E. (13) 

no no g nc 

In expression (13), n and 2 are as previously de- 
g 

fined, c : nk, and E denotes the expectation of the 

sum of the covariance terms in (5). When the total 

number of lines (c) is fixed, it is no longer clearthat 

the optimal choice is n = 1. Inspection of (13) shows 

that the choice of n should now depend on Pg(1 -Pg), 
2 

and E. A little manipulation of (13) reveals that 
g 

n should be chosen to be 1 if 

r e ( l - P ) -  a _ E ]  
Z= -,~ g 

2 
~ 

<4. 

Otherwise, n should be chosen as the closest integer 

less than ~[-~. The presence of E makes these condi- 

tions difficult to evaluate in practice. However, un- 

der the simplifying conditions used previously to ob- 

tain expression (8), E = 2P(~-~ - P). Thus, an ap- 

Complete Tabulation of Part of the Pedigree 

Instead of tracing a total of 2n randomly chosen paths, 

it may be desirable to completely tabulate the first 

few generations in the pedigree back from the indivi- 

dual in question and then continue to trace the ancestry 

using the random pedigree method. This procedure was 

also proposed by Wright and McPhee. It suffers to 

some extent, however, because it can require con- 

siderable effort to achieve a substantial increase in 

precision: in addition to completely tabulating part of 

the pedigree, one must keep track of the number of 

generations back to a common ancestor for part of 

the computations. Also, the total number of pairs is 

restricted to being a power of two (i.e., if the pedi- 

gree is tabulated completely for 4 generations there 

will be 24 = 16 random lines continuing back to the 

foundation stock). On the other hand, in many breeds 

a substantial part of the variation in the inbreeding 

coefficient between individuals may be contributed 

by recent generations ; it is thus of value to tabulate 

these generations completely. 

Assume that the pedigree of the individual in ques- 

tion is to be completely tabulated for g generations 
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b a c k  of h i s  p a r e n t s ,  and  t h a t  the  a n c e s t r y  a f t e r  t he  

g th  g e n e r a t i o n  wil l  be  t r a c e d  u s i n g ,  f o r  e a c h  i n d i v i d -  

ual  in  g e n e r a t i o n  g,  a s i n g l e  r a n d o m  p a t h .  The i n b r e e d -  

ing c o e f f i c i e n t  m a y  be  d e c o m p o s e d  a s  f o l l o w s  

n .+m.  n .+m.  
i i 1 I 

~1 ~2 

n .+m.  n .+m.  

+E + E  = %  
o~ 3 ee 4 

+ Q 2 + Q 3 + Q 4  

w h e r e  

c~ I = {ilboth m i and n i ~ g l  

c~ 2 = {ilni~<g and mi>g}  

c~ 3 = { i l n i > g  and mi~<g} 

c~ 4 = {ilboth n i and m i > g  } . 

Note  t h a t  ~1 c o r r e s p o n d s  to t h e  c o m m o n  a n c e s t o r s  in  

the  c o m p l e t e  p o r t i o n  of  t he  p e d i g r e e ,  ~2 a n d  ~3 c o r -  

r e s p o n d  to t he  c o m m o n  a n c e s t o r s  in  t he  c o m p l e t e  p o r -  

t i on  of the  p e d i g r e e  on  one  s i d e  a n d  t he  r a n d o m  p o r t i o n  

on  the  o t h e r ,  a n d  e4  c o r r e s p o n d s  to t he  c o m m o n  a n -  

c e s t o r s  in  t he  r a n d o m  p o r t i o n  of  the  p e d i g r e e .  

B e c a u s e  of  t h e  n a t u r e  of  t h e  s a m p l i n g  s c h e m e  Q I '  

Q2 '  Q3 '  Q4 a r e  to be  e s t i m a t e d  s e p a r a t e l y .  

Q1 i s  d e t e r m i n e d  d i r e c t l y  f r o m  t h e  c o m p u t a t i o n a l  

f o r m u l a  a n d  i s  not  e s t i m a t e d  but  wil l  be  k n o w n  wi th  

c e r t a i n t y .  It m a y  be  t a k e n  a s  a l o w e r  b o u n d  on  2 F .  

Q2 i s  t he  p r o b a b i l i t y  of  a t i e  f o r  the  c o m m o n  

a n c e s t o r s  in  t he  c o m p l e t e  p o r t i o n  of  t h e  p e d i g r e e  on  

t he  s i r e  s i d e  and  t he  r a n d o m  p o r t i o n  on  t h e  d a m  s i d e .  

A s s u m i n g  t h a t  t h e r e  a r e  a s o b s e r v e d  c o m m o n  a n -  

c e s t o r s  in  t he  c o m p l e t e  p o r t i o n  of  t h e  p e d i g r e e  on  t h e  

s i r e  s i d e ,  Q2 m a y  b e  e s t i m a t e d  u n b i a s e d l y  by  

a 

i=1 

w h e r e  n i i s  t he  n u m b e r  of  g e n e r a t i o n s  to  t h e  i th  o b -  

s e r v e d  c o m m o n  a n c e s t o r  on  t he  s i r e  s i d e  of  t h e  p e d i -  

g r e e .  To s e e  t h a t  Q2 i s  a n  u n b i a s e d  e s t i m a t e  of  Q 2 '  

c o n s i d e r  t he  f o l l o w i n g :  t he  p r o b a b i l i t y  of  d e t e c t i n g  

t he  i t h  c o m m o n  a n c e s t o r  in  b o t h  t he  c o m p l e t e  p o r t i o n  

of t he  p e d i g r e e  on  t he  s i r e  s i d e  and  t he  r a n d o m  p o r -  

mi-g 

t i o n o f t h e p e d i g r e e o n t h e d a m s i d e i s  ( 1 )  . D e -  

f ine  t he  r a n d o m  v a r i a b l e  W i by  

W . = l  
1 

= 0  

i f  t he  i th  common a n c e s t o r  i s  d e t e c t e d  

b o t h  in  t he  c o m p l e t e  s i r e  s i d e  a n d  in  t he  

r a n d o m  d a m  s i d e  of  t he  p e d i g r e e  

e l s e w h e r e .  

Then  E W  i ( 1 )  m i - g  = a n d  

n i+g  n. +m. 
1 l i 

~2 

It f o l l o w s  i m m e d i a t e l y  t h a t  r i s  u n b i a s e d .  

The a n a l o g o u s  u n b i a s e d  e s t i m a t e  of  Q3 i s  

ad  m i +g 

i=1 

w h e r e  m.  i s  t h e  n u m b e r  of  g e n e r a t i o n s  to  t h e  i th  
1 

c o m m o n  a n c e s t o r  in  t he  c o m p l e t e  p o r t i o n  of  t he  p e d i -  

g r e e  on  t he  d a m  s i d e  and  a d i s  t he  o b s e r v e d  n u m b e r  

of c o m m o n  a n c e s t o r s .  

The i d e a  b e h i n d  e s t i m a t i n g  Q4 i s  b a s i c a l l y  t h e  

s a m e  a s  t h a t  d i s c u s s e d  p r e v i o u s l y .  H o w e v e r ,  t h e  

l i n e s  in  t he  r a n d o m  p o r t i o n  of  t h e  p e d i g r e e  t h a t  c o m -  

p r i s e  t h e  p e d i g r e e s  of  t he  c o m m o n  a n c e s t o r s  u s e d  in  
^ ^ 

t h e  c a l c u l a t i o n  of  Q I '  Q2 and  Q3 s h o u l d  not  b e  u s e d .  

L e t t i n g  Y..  = 1 (i  = 1 , 2 . . . s ,  j = 1 , 2 . . . d )  i f  t h e r e  i s  
lj . th 

a t i e  b e t w e e n  t he  i t h  r e l e v a n t  s i r e  l i n e  a n d  t he  j 

r e l e v a n t  d a m  l i n e  and  z e r o  e l s e w h e r e ,  we h a v e  t h a t  

s d 
Z Z Y . .  

(~4 = i_=l j : l  'J 
s d  2 2g 

i s  a n  u n b i a s e d  e s t i m a t e  of  Q4" Note  t h a t  m a x i m u m  

n u m b e r  of  p o s s i b l e  t i e s ,  sd ,  b e t w e e n  s i r e  a n d  d a m  

l i n e s  in  t h e  r a n d o m  p o r t i o n  of  t h e  p e d i g r e e  i s  s i m p l y  

s d  = 22g i f  t h e r e  a r e  no c o m m o n  a n c e s t o r s  in  t he  

c o m p l e t e  p o r t i o n  of  t h e  p e d i g r e e .  

The e s t i m a t e  of  P = 2F c a n  now b e  w r i t t e n  s i m p l y  

a s  

= % + Q2 + Q3 "§ 
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^ 

The variance of P is easily seen to be the sum of the 

variances of the individual estimates, 

v(~') -- V(Q27 + v(~37 + V(Q47. 

V(Q4) can be determined following the procedure pre- 

viously outlined : 

V(Q 4)= Q422g(1 - Q422g) 

sd 22g 
d-i CoV(Yll,Yl2) + +-fa- 

+ ~s-I CoV(Yll,Y21) 

where m. (i) denotes the number of generations to the 
1 fl 

common ancestor associated with W. ~ j. The latter 
1 

result follows from the observation that for each 1 the 

d i s t r i b u t i o n  of  { W i (1) t i s  m u l t i n o m i a l .  With t h e s e  r e -  

su i t s  a l i t t l e  a l g e b r a  wil l  v e r i f y  that  

v(~27 : v1(~27 - 

m.(1)+m.(1)+n (1)+n.(1)l 

1 [ i i /j  j 
(16) 

An estimate of this variance can be found by setting 
^ 

Q4 = Q4 and estimating the covariance terms in the 

same way the covariance terms in expression (5) 
^ 

were^ estimated. A first approximation to V(Q2)and 

V(Q3) can be easily found by assuming that each pe- 

digree of the individuals in generation g can contain 

at most one common ancestor. Under this assump- 

tion we have 

2n i + 2g 

2n. + 2g m i -g 

S i m i l a r l y ,  

VI(Q3) = ~ ( I )  I _ (I) ni-g . 

(15) 

Estimates of these variances can be found by evaluat- 

ing the sums over the set of observed common ances- 

to rs. 

If some pedigrees initiating from the individuals 

in generation g contain more than one common an- 

cestor the random variables (W i) associated with 

these pedigrees will be correlated. Indexing the ran- 

dom variables so that W. (1) are associated with the 
1 It h 

common ancestors in the pedigree on the dam 

side (i = 1 , 2 , . . . R  l and i = 1 ,2 , . . .L ,  say) we have 

Coy (w i (1), wj 

and 

Cov(Wi(1), Wj 

(l')) = 0 I~i' 

(1)) = _ (�89 
i / j  

^ 

where VI(Q2) is from expression (157. If each pe- 

digree initiating from the individuals in generation g 

contains only one common ancestor, then R 1 = 1 for 

all i and this expression reduces immediately to (157. 

Moreover, under the present sampling scheme (one 

random data per individual in generation g) the only 

estimate available for the covariance portion of (16) 

is zero and we are thus led back to (15) for the pur- 

pose of estimating V(Q27. Analogous results for 

V(Q 3) can be obtained by interchanging n i and m i - 

Discussion 

The procedure of estimating the inbreeding coefficient 

by making all possible pairwise comparisons between 

a set of n maternal and n paternal ancestries has 

been used previously by Robertson and Mason ( 1954 

-- see also Robertson and Asker 19517. Robertson 

and Mason sampled each pedigree by tracing one line 

back at random on both sides of the pedigree and at 

each step in the procedure writing down both the male 

and female parent, even though the line was carried 

back through only one of the parents. They thereby 

generated two maternal and two paternal lines. The 

counting of ties in this method must be modified some- 

what to take into account the nonindependence of both 

the maternal lines and the paternal lines. Specifical- 

ly, when a tie appears in the randomly chosen line, 

then the sire and dam must appear twice in the preced- 

ing generation and the resulting ties must not be count- 

ed. Moreover, ties lying behind an initial tie are to be 

counted only when the random lines from the animal 

constituting the initial tie passed one to the sire and 

one to the dam. With these modifications, the method 

of estimation proceeds as before. 
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It i s  worth emphas iz ing  that the sugges ted  method 

of e s t ima t ing  the inbreeding coef f ic ien t  by mul t ip le  

compa r i son  of s i r e  and dam l i n e s  p rov ides  a much 

m o r e  eff ic ient  use of data than does compar ing  each  

s i r e  l ine  with only one dam l ine .  As ment ioned p r e -  

v ious ly ,  a l a rge  par t  of the ef for t  in e s t ima t ing  in -  

breeding  by the Wr igh t -McPhee  method is  t r a c ing  

a n c e s t r i e s  through the herdbook.  Once this  has been 

done, t he re  s e e m s  l i t t l e  r ea son  to ex t r ac t  f rom the 

a n c e s t r i e s  l e s s  than the m a x i m u m  amount of i n f o r m a -  

tion they contain. 
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